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The basic fact expressed by the title is not difficult to prove, in a sense is
well known, and has yet never been proved in public. Voila three reasons for
this contribution.

DEFINITION 1 (LTS): A labelled transition system is a triple @=(S,4,—) con-
sisting of a set of states S, a set of labels A, and a transition relation
—CSXAXS. We shall write s-%5s’ for (s,a s)e->. A LTS is called image
finite if for all seS and a4 the set {s”: s—2>s'} is finite.

DEFINITION 2: Let @=(S,4,—) be a LTS. A relation RCSXS is called a
(strong) bisimulation if it satisfies for all 5, €S and ae4:

(sRt A s-Ds") = IeS [t A s'Rt’} and
(sRt A t-951) = 35’eS [s-9>5' A 'R’}
Two states are bisimilar, notation s, if there exists a bisimulation relation R

with sRt. The relation < is again a bisimulation. Note that bisimilarity is an
equivalence relation on states.

DEFINITION 3 (Processes): Let the set of processes P be the unique complete
metric space that satisfies the following reflexive equation:

P =9, (AXP).

Let d be the metric on P. The metric on ¥,,,.;(4 X P) is the Hausdorfl metric
dy induced by the following metric on 4 X P:

1 if aﬁ&az
d(<a1,p1> <azp>)= Yed(py,p2) if a;=ay.
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The Hausdorfl metric dy is given, for every X,Y €9 y,.4(4 X P), by

dH(X’ Y)=max{supxeX{d(x1 Y)},SUPer{d(Y,X)}},

where d(x,Z)=inf,Ez{3(x,z)} for every Z €% psea(A X P) and x€A X P.
(By convention sup? =0 and inf@ =1.)

DEFINITION 4: Let @=(S,4,—>) be an image finite LTS. We define a mapping
9M:S—P by
Mfs] = {<a, Ms1>: s-D>5').
Actually, the precise definition of 9 is IMs] = i({<a,Ms}>: s-D>s5'}),
with i :9,e4(A X P)—P an isometry between Fy,.4(4 X P) and P, but for con-
venience we usually leave out isometry symbols. Remark that the isometry i is
necessary to stay within well-founded set theory.
We can justify this recursive definition by taking 9N as the unique fixed
point (Banach’s theorem) of a contraction ®:(S—P)—>(S—P), defined by
B(F)(s) = {<a,F(s)>: s D s'}.
The fact that ® is a contraction can be easily proved. The closedness of the
set O(F)(s) is an immediate consequence of the image finiteness of & Consider
a Cauchy sequence (<g;,F(s;)>); in ®(F)s). From the definition of the
metric on A X P it follows that there exist ae4 and IeN such that g;=a for
all i>I. Because @ is image finite there exists 5 with s, =5 for infinitely many
s. Thus the entire sequence (<a;,F(s;)>); has <a,F(5)>e®(F)Xs) as its
limit.

THEOREM 1: Let @=(S,A,—>) be an image finite LTS. Then:

Vs,teS [set « Ms] = Ife]]

ProOF: Let s,2€8.
«:
Suppose MIs}=M[¢]. We define a relation =C S XS by

s'=t' o Ms'I=+'}.
From the definition of 9N it is straightforward that = is a bisimulation relation
on S: Suppose ¥=t' and s'-2>s”; then <a, Ms”}>eMs'I=+'}; thus
there exists €S with ¥ -2>¢” and IMis”]=9[t"], that is, s”=t". Symmetri-
cally, the second property of a bisimilation relation holds. From the hypothesis
we have s=t. Thus we have s<1.
=
Let R CS XS be a bisimulation relation with sRz. We define

€= !s:;ps{d(‘ﬁllls'], oY +'D): s’Rt’}.

We prove that ¢=0, from which 9fs]=9{] follows, by showing that e</s-e.
We prove for all &, ' with s’Rt’ that d(9fs’], 9+']) < Yoe. Consider s','eS



245

with ¢Rt’. From the definition of the Hausdorfl metric on P it follows that it
suffices to show

d(x,9t']) < %€ and d(y,s'}) < %-e
for all xe9nfs’] and ye9I+']. We shall only show the first inequality, the

second being similar. Consider <a,9s”]> in 9s’] with 5’ —45¢'. Because
SRe and s 95" there exists 1S with £ -2>¢” and s”Rt”. Therefore

d(<a,s"]>, M) = d(<a, Ns"1>, {<a,IUr}>: ¥ 857}
< [ we have: d(x,Y) = inf{d(x,y):yeY} ]
d(<a, s>, <a,oMt"}>)
= Y%-d(Ifs”], Oe"T)

< [ because s”Rt” | e O

Next we will generalise theorem 1 to the case that € is not required to be
image finite. For this purpose we will work in Aczels universe of non-well-
founded sets. This universe is an extension of the Von Neuman universe of
well-founded sets, where the axiom of foundation (every chain x¢2x;3 - - -
terminates) is dropped. Instead an anti-foundation axiom (4F4) is adopted,
saying that systems of equations like the one in definition 4 have unique solu-
tions. Let °V be this universe. In V there exists a unique complete metric space
P satisfying
P =9 psed(A X P).

This space can be regarded as a canonical representative of the space from
definition 3 in the universe of non-well-founded sets. It can be obtained from
any constructed solution of the domain equation in definition 3 by means of
projection. Since this canonical representative contains non-well-founded sets
indeed, it can not be found in the Von Neuman universe.

We can now extend definition 4 with image infinite LTSs.

DEFINITION 5: Let @=(S,4,—) be a LTS. We define a mapping IM:S—->Vby

MEs)={<a,Ms]>: s -Ay57.
If @ is not image finite, 9Mfs] for s €S may be outside P.

THEOREM 2: Let FSA =(S,A,—) be a LTS. Then:
Vs,teS [set < s] = odr])

PrOOF: This theorem follows immediately from the categorical considerations
in Aczels lecture notes on non-well-founded sets. Below we provide a direct
non-categorical proof.

=:

Exactly as before.
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=:
Let O :S—V denote the unique solution of

WIs)={<a,M[F]>:IreSres A r-5r).

As for 9 it follows from AFA that such a unique solution exists. Since < is
an equivalence relation it follows that

set = WIsi=aC[] *)

Hence it remains to be proven that 9 =9R. This can be done by showing that
9 satisfies the equations MIs1={<a, IMIs'}>: s-2>s’}, which have I as
unique solution. So it has to be established that

M [s)={<a, MW [s'}>: s g5513.

The direction ” 2" follows directly from the reﬂexmty of «. For "C”, sup-
pose <a,X>eN [s). Then Ar,r: r 25, r-%>r’ and X = [r']. Since < is
a bisimulation, Is”: s-9>s’ and r' 2 s’. Now from (*) it follows that

X=[r1=9%"[s'}. Therefore <a,X>e{<a,M[s']>: s-9>s5'}, which
had to be established.





